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Free -convec t ion  heat t ransfer  is investigated in spher ical  volumes and in a horizontal  
cyl inder  with a constant heat flux density at the surface.  Relations are  obtained for the 
tempera ture  distribution and the rate of heat t ransfer  at the wall - liquid interface.  

Studies of motion and heat t ransfer  in natural convection are  of in teres t  from both the theoret ical  and 
prac t iea l  points of view. The theoret ical  in teres t  lies p r imar i ly  in such features of the p rocess  as the 
interaction of the boundary layer  with the bulk of the liquid, charac te r ized  by cer ta in  velocity and t empera -  
ture distr ibutions.  

One of the most  important  pract ical  applications of the problems of internal convection is related to 
the problem of the pro t rac ted  s torage of cryogenic liquids. 

Convection in horizontal  and ver t ical  layers  of liquid has been adequately studied for various boundary 
conditions. Numer ica l ,  experimental ,  and theoret ical  studies have led to data on the laws of heat t ransfer  
in layers ,  the nature of the motion of the liquid, and the tempera ture  distributions [1-8]. Heat t ransfer  in 
ax i symmetr ic  volumes (sphere, torus,  horizontal  cylinder) during the development of convection is c o m -  
plieated largely as a resul t  of the specific configuration of the hea t - re leas ing  surface,  and has not been 
investigated except for cer ta in  regular i t ies  related to the overal l  hea t - t r ans fe r  cha rac te r i s t i c s  [9-13]. 
What has been said applies p r imar i ly  to the pract ical ly  important  case when the heat flux density at the 
boundary of the volume is specified. 

The present  work is a continuation of the studies reported in [13, 14] and seeks to determine the 
cha rac te r i s t i c  convection t imes in a spher ical  volume with a given heat flux density at the surface,  and 
to study the pat tern of motion of the liquid and the reasons  for  the temperature  strat if icat ion of the liquid 
over  the height of the volume. 

The flow was made visible by introducing powdered aluminum into a horizontal  cyl inder  ( L / R  = 1.4) 
with t ransparent  bases filled with polyethylsiloxane liquid No. 2 (Pr = 77.5, v = 8 .23.10 -6 m2/sec) .  

The photographs in Fig. 1 show the charac te r i s t i c  features  of the development of the motion and the 
pat tern corresponding to the establishment of the flow in a horizontal  c i r cu la r  cylinder.  

Experiment shows that the pattern of motion is plane and symmetr ic  with respec t  to the ver t ical  
plane passing through the axis of the cylinder.  Three charac te r i s t i c  flows of the liquid can be distinguished 
in a c ro s s  section: an upward jet, flow along the hea t - re leas ing  surface,  and a counter  flow in the bulk of 
the liquid. The last two flows form a circulat ion loop. 

Motion of the liquid along the hea t - re leas ing  surface,  i.e., the flow determining the hydrodynamic 
boundary layer ,  is observed from values of the coordinate angle ~p _> 15-20 ~ In the boundary layer ,  against 
the background of the general  mass  motion of the medium, appear  individual jets r is ing from the shell 
and spreading to the sides. On the whole the flow of the liquid here  is of the nature of a traveling wave, as 
is par t icular ly  c lear ly  shown in the 15 _< ~p _< 90 ~ region. This charac te r i s t i c  of the motion can be c lear ly  
seen in Fig. lc and d. 

Physieotechnical  Institute of Low Tempera tu res ,  Academy of Sciences of the Ukrainian SSR, K h a r ' -  
kov. Translated from [nzhenerno-Fizieheski i  Zhurnal,  Vol. 27, No. 1, pp. 5-14, July, 1974. Original 
ar t ic le  submitted November  21, 1973. 

�9 76 Plenum Publishh~g Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by atLv means, electronie, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15. 00. 

791 



Fig. 1. Pa t t e rn  of motion of a liquid in a hor izonta l  cyl inder :  a) ~ = 1.5 min; b) 13.5; c) 14; d) 
17; e) 18.5; f) 25. 

The m a x i m u m  veloci ty  of the liquid in the boundary l ayer  (~:1-0 -2 m / s e c )  occurs  in the region of the 
boundary whe re ~ = 70-90 ~ 

Higher  along the shel l  the wave c h a r a c t e r  d i s appea r s ,  the flow becomes  s t ead ie r  and takes on the 
c h a r a c t e r  of a c reep ing  motion.  

Damping of the flow of the boundary l ayer  in the upper  par t  of the volume is a c h a r a c t e r i s t i c  feature  
dist inguishing the boundary l ayer  in finite volumes heated f rom all s ides f rom convect ive motion in infinite 
ve r t i ca l  l ayers .  When the bulk t e m p e r a t u r e  of the liquid i n c r e a s e s  upward in a finite volume the e lements  
of liquid in the outer  pa r t  of the boundary l aye r  finally fal l  into the uniform density region; that i s ,  they 
lose their  excess  angular  momentum and energy  with r e s p e c t  to the bulk of the liquid and become pa r t  of 
it. Thus the veloci ty  d iminishes  and the m a s s  of the boundary l aye r  d e c r e a s e s .  In such configurat ions 
as  a sphere ,  to rus ,  or  hor izontal  cy l inder  the slowing down of the flow inthe boundary l ayer  aids not only 
the t e m p e r a t u r e  and densi ty grad ien ts  in the bulk of the liquid, but a lso  the or ienta t ion of the heat  r e leas ing  
sur face  in the grav i ta t iona l  field for  ~ > 135 ~ 

A long with the upward flow in the boundary layer  there  is a counter  flow in the bulk of the liquid. In 
the format ion  of the c i rcu la t ion  flow the pe r iphe ra l  regions  of the bulk a r e  set  into motion f i r s t ,  and then the 
whole bulk acqu i res  a downward motion.  In the outer  pa r t  the downward flow of the liquid tends to follow 
the curved conta iner  wall ,  but is forced toward the cen te r  by the je t s  r i s ing  f rom the bottom. 

Single ascending and descending je t s  occupy an apprec iab le  pa r t  of the volume. The ascending je ts  
lie in the 0 _< q~ _< 70 ~ range and penet ra te  the bulk of the liquid to a height z ~ R (Fig. 1a-c).  * 

As a r e su l t  of the in terac t ion  of the downward flow and the je t  flow the liquid in the lower pa r t  of the 
volume is well  mixed and the heat  enter ing this region is r a t he r  uniformly dis tr ibuted.  

One should expect  the pa t te rn  of the motion of liquid in a spher ica l  volume to be genera l ly  s i m i l a r  to 
that observed  here .  

*This type of mot ion occur red  throughout the whole exper iment .  The fact  that the je ts  a r e  not fixed in 
Fig. l d - f  is a r e su l t  of the powder being c a r r i e d  away f rom the lower pa r t  of the volume.  
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Fig. 2. Change of the temperature drop between the shell and the outside of the boundary layer: 
1) ethyl alcohol, d iameter  of vessel  @ = 0.15 m, q = 1.06.102 W / m  2, ira = 1.4- 109; 2) ethyl 
alcohol,  @ = 0.3 m,  q = 2.64" 102 W / m  2, ira = 5.6" 1010; 3) water ,  @ = 0.3 m, q = 15.1.102 W 
/ m  2, ira = 3.2 �9 101~ 4) ethyl alcohol, @ = 0.3 m, q = 13.5.102 W / m  2, ira = 2.8 �9 1011. ~-'xperl- 

mental  points: 1') (p = 112.5~ 2') 135; 3') 157.5. -r is in min and At in ~ 

Fig. 3. Limit  of establishment of quasis ta t ionary heat t r ans fe r  at a ver t ical  plate [15] (solid 
line) and in a spherical  volume (experimental points): 1) water ,  @ = 0.15 m,  q = (4; 6.8; 9.4) 
�9 102 W / m 2 ;  2) ethyl alcohol, @ = 0.15 m, q = (3; 5.3; 7.4). 102 W / m 2 ;  3) water ,  ~ = 0.3 m, q 
= (3.4; 8.4; 13.4). 102 W / m 2 ;  4) ethyl alcohol, @ = 0.3 m, q = (2.6; 6.8; 12.4)- 102 W / m  2. 

Heat t ransfer  in a spherical  volume was investigated in 0.15, 0.3, and 0.5 m diameter  vessels  filled 
with butyl and ethyl alcohol and distilled water.  Heat was supplied to the surface of the vesse l  by an electr ic  
heater  at a rate 102 --< q _< 103 W / m  2 with 3 �9 108 _< Ra _< 1011. 

We present  below an analysis  of the charac te r i s t ic  hea t - t r ans fe r  t imes in a spherical  volume c o r r e -  
sponding to nonstat ionary,  transient ,  and quasis ta t ionary p rocesses .  

In the present  problem the hea t - t r ans fe r  p rocess  is a resul t  of the interaction of convective heat 
t r ans fe r  by c i rcu la tory  motion of the liquid and heat conduction. The time evolution of m i c r o -  and m a c r o -  
t r ans fe r  p rocesses  is a resu l t  of the charac te r  of the heat t r ans fe r  at var ious stages~ 

Heat t ransfer  at the w a l l -  liquid interface is determined by p rocesses  in the boundary layer ,  and 
becomes quasis ta t ionary af ter  the passage of the f i rs t  wave of liquid along the shell. Examination of the 
curve  showing the change of the temperature  drop between the shell and the outside of the boundary layer 
with the time of its formation shows that the extreme points separate the process  of the formation of the 
tempera ture  drop into two periods (Fig. 2). The f i rs t  period,  corresponding to the par t  of the curve from 
T = 0 to the instant when the drop reaches  its maximum, is charac te r ized  by- the predominance of heat 
conduction in the hea t - t r ans fe r  p rocess  in the boundary layer.  The second period is charac ter ized  by the 
increas ing contribution of convection and ends with the establishment of a steady drop. The time to es tab-  
lish a steady temperature  drop at the w a l l -  liquid interface does not exceed 1.5-3 rain in our experiments.  
P a r t  of this time* is consumed in establishing the tempera ture  distribution over the thickness of the shell. 
The brevity of the nonstationary par t  of the hea t - t r ans fe r  p rocess  at the boundary of the configuration for 
a negligible change in its duration from experiment to experiment,  i .e. ,  with a change in the size of the 
vesse l ,  the kind of liquid, and the magnitude of the heat flux, does not permi t  the deduction of any relation 
accura te ly  establishing the time limit of this regime.  

In the range of Rayleigh numbers  investigated the average time to establish quasis tat ionary heat 
t r ans fe r  at the w a l l -  liquid interface cor responds  to a Four i e r  number of ~10 -3. 

A compar ison  of our  experimental  points corresponding to the limit of quasis tat ionary heat t ransfer  
with a corresponding relat ion for a ver t ica l  plate [15] extrapolated to 1Rayleigh numbers  g rea te r  than 107 
shows good agreement  (Fig. 3). 

*Calculations per formed on the assumption that at time zero  all the heat supplied by the heater  goes into 
heating the shell show that the time necessa ry  to produce the given temperature  drop is of the o rde r  of 0.1- 
0.5 min. 
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A s i m i l a r  conclusion follows a lso  f rom very  genera l  cons idera t ions .  In the ini t ial  s tage of the p r o -  
c e s s ,  when the volume of the liquid is not s t ra t i f ied ,  i .e . ,  there  is no adve r se  densi ty gradient  and no bulk 
c i r cu l a to ry  mot ion,  the flow of the boundary l ayer  in a spher ica l  volume exper i ences  the same  in teract ion 
as on a ve r t i ca l  plate if  s ingular i t ies  introduced by the cu rva tu re  of the shell  a r e  neglected. 

The ra te  of heat  t r a n s f e r  at  the w a l l - l i q u i d  in te r face  in the quas i s ta t ionary  r eg ime  can be exp re s sed  
in t e r m s  of the ove ra l l  h e a t - t r a n s f e r  coeff ic ient  as  a function of the Rayleigh number  

Nu ::  CRa t~, (i) 

n 

w h e r e N u = ~ R / X ;  ~z= 1 ~t~ ' 
q 

n Andi=l ~ ; 3 " 5  108-<Ra-<1012; C = 0 . 7  • 0 . 1 ; k = 0 . 2  • 0.005. 

The format ion  of the t e m p e r a t u r e  dis t r ibut ion in the bulk of the liquid can be divided into three  s tages  
cor responding  to nonsta t ionary ,  t rans ien t ,  and quas i s ta t ionary  h e a t - t r a n s f e r  p r o c e s s e s .  During the f i r s t  
s tage the liquid acqui res  a c i r cu la to ry  motion and the p r o c e s s  is of a pa r t i cu la r ly  nonsta t ionary c h a r a c t e r ;  
the r a t e s  of heating o f  the upper  and lower  regions  of the volume a re  apprec iab ly  di f ferent  - low for  the 
lower  region and high for  the upper  region.  The nature  of heat  t r a n s f e r  in the t rans ien t  r eg ime  is d e t e r -  
mined bas ica l ly  by the c i r cu l a to ry  motion and nonsta t ionary heat  conduction. The heating r a t e s  at  var ious  
points of the volume in this s tage a re  leveled out and approach  the value given by the mean  bulk t e m p e r a t u r e  
law 0 = h[(t T - t  0)/qR] = 3Fo. It may  be n e c e s s a r y  to a s s u m e  a quas i s ta t ionary  reg ime  cha rac t e r i zed  by 
the equali ty of the heating r a t e s  at all  points of the volume to es tab l i sh  s ta t ionary  t r a n s f e r  by heat  conduc-  
tion (Fo* -~ 0.5). 

The t ime to e s t ab l i sh  the t r ans ien t  r eg ime ,  or  the upper  l imi t  of the nonstat ionary r eg ime ,  d e t e r -  
mining the duration of the format ion  of the c i r cu la to ry  mot ion in the volume can be obtained by assuming  
that the c i r cu la to ry  motion is  fo rmed  a f t e r  a single pas sage  of al l  the liquid in the volume through the 
boundary layer .  Thus 

U 
x* -- , (2) 

G 

o r  

~2 
T* = 0.845-- (3) 6~ 

Here  v is the volume of the vesse l ;  G is the vo lumet r ic  flow ra te  through the boundary layer ;  U is the 
average  veloci ty of the liquid in the boundary layer ;  and 5 is the ave r age  thickness  of the boundary layer .  

By using Eq. (1) the re la t ion  for  the thickness  of the boundary l aye r  5 = 2 R / N u  obtained in [13] b e -  

comes  

5 = 2.86 ~ (4) 
t~a0,2 ' 

Assuming  that al l  the heat  pass ing  through the shell  in the region of the pronounced boundary layer  (0 
_< (p _< 135 ~ is  t r a n s f e r r e d  to the bulk of the liquid in the region 0 -< z / R  -< 1.7, cha r ac t e r i z ed  by a closed 
heat  balance,  it is  poss ib le  to obtain the following fo rmula  for  the ave rage  veloci ty  of the liquid in the 
boundary layer :  

UR -- 0.92Ra ~ , (5) 
a 

o r  

--  1 Ra ~ (5a) uR = 0.92 pr  " 
V 

Substi tution of (4) and (5) into (3) g ives  

p 2 
�9 * = 0.32 - -  Ra -~ , 

a 

or ,  t r ans fo rming  to genera l ized  va r i ab l e s  

Fo* = 0.32Ra -~ 

(6) 

(7) 
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TABLE i. Values of the Coefficients in Eqs. (8) and (11) Describing 
the Tempera ture  Distribution in a Liquid 

Liquid 

z i 
--R-- Bi  CI'102 bi mi 'M/'IO~ 

0@0,6 
0,9 
1,15 
1,4 
1,7 
1,85 
2,0 

1,245 
1,66 
2,2 
4,15 

15,6 
27,44 
55,4 

--0,265 
--0,187 
--0,15 

0,13 
5,0 

12,9 
38,0 

0,03 
0,02 
0,01 

--0,01 
--0,05 
--0,065 
--0,085 

--444 
--176 
--97,9 

38,0 
270 
350 
437 

--0,0381 
--0,281 
--0,690 

3,06 
1,09 
1,16 
1,32 

A s imi la r  relation can be obtained also from an analysis  of the heating curves  for various points of 
a spher ical  volume since the onset of the t ransient  hea t - t r ans fe r  regime manifests  i tself in a change in the 

curva ture  of these curves .  

The t imes charac te r i s t i c  for var ious Rayleigh numbers  calculated by using Eq. (7) are  ra ther  close 
to the resul ts  obtained in [17] where numerica l  methods were used to investigate natural  convection in a 
flat region with the admiss ion of heat through the la teral  surface.  

The quasis ta t ionary regime of heat t r ans fe r  was not reached in our experiments  since the duration 
of the exper iments  was limited by the boiling of the liquid. 

In the time interval  studied (0 < Fo _< 3 .10  -2) relat ions were obtained in general ized var iables  de-  
scr ibing the time dependence of the tempera ture  at various points on the ver t ica l  axis of a spherical  vol-  
umes and in the meridional  c ro s s  section on the shell. 

During nonstat ionary heating (0 < Fo ~ Fo*) 

Oirn = • [I - -  exp (-- miFol], (8) 

where m i and • are  dimensionless  coefficients depending on the Rayleigh number and determined from 
Eqs. (9)and (10), respect ively ,  

exp (-- mi Fo*) --  1 C i 
- -  Yo*, (9)  

m~ B~ 

~ = B~ ~a~' ~ -  + _1_ 
m i (i O) 

In the t ransient  regime (Fo* _< Fo _< 3- 10 -2) 

O i = (C i -}- B i Fo) Ra ~'/. (11) 

The values of the coefficients in Eqs. (8) and (11) are  listed in Tables 1 and 2. The accuracy  of the 
calculation of the tempera ture  using the relat ions given is • for the lower region (0 -< z / R  -< 1.5), 
and • for the upper region (1.5 -< z / R  _< 2.0). 

Figure 4 shows typical curves  for the temperature  distribution along the ver t ica l  axis of the vessel .  
The cha rac t e r  of the curves  indicates large temperature  gradients in the upper par t  of the volurne and 
appreciably more  heating than in the average bulk of the liquid in this region. These features  of the tern- 
pera ture  distr ibution are accounted for  in most  of the convection studies known at the present  time by 
assuming the formation of a heated stratif ied zone as a resul t  of the energy yielded by the boundary layer  
[18-21]. It must  be assumed that this hypothesis represen ts  a rea l  process  only when bounded regions are  
considered with heat input through the lateral  wails. For  heat input in all directions the heating and tern- 
pera ture  s trat i f icat ion of the liquid in the upper par t  of the configuration are  due mainly to heat flow through 
the upper regions of the boundary. This is tested by an energy analysis  compar ing the actual increments  
of the mean t empera tu res  of var ious horizontal  layers  with the values of the tempera ture  increment  ca l -  
culated by assuming that all the heat supplied by the heater  at the boundary of a given layer  goes to increase  
its temperature .  The experimental  vaIue of the increment  in the mean temperature  0 e during a chosen 
time interval  in the range 0 < z / I I  _< 0.6 is 1.7-2.5 times smal le r  than that calculated under the above 

)The tempera ture  distr ibution along the ver t ica l  axis is sufficient to descr ibe the tempera ture  distribution 
in the bulk of the liquid since as the volume is heated the tempera ture  is constant at each instant in each 
horizontal  c ro s s  section. 
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TABLE 2. Values of the Coefficients in Eq. (11) Describing the 
Tempera tu re  Distribution in a Shell in the Transient  Heating Re -  
gime 

Shell 

~po Bi CF 10 z bi tpo Bi Ci. 10 2 bi 

0~-45 
67,5 

I12,5 

9,35 
10,77 
16,5 

3,98 
4,6 
9,44 

! 

--0,058 135 
--0,05 157,5 
--0,07 t80 

29,6 
43,7 
55,4 

1 8 , 5  
29,34 
38,0 

--0,08 
--0,085 
--0,085 

' I f  
. L I L  , ,  , 

0 5 10 15 20 25 3.~ .~,7 //17 /~ 

0,25 

Fig. 4. Tempera ture  distribution along 
the ver t ica l  axis of a spherical  volume: 
1) ~- = 3 min, Fo = 0.65. 103; 2) 5 and 
1.08.103, respect ively;  3) 7 and 1.52 
�9 103; 4) 11 and 2.39- 103; 5) 15 and 3.25 
�9 103; 6) 25 and 5.9" 103; 7) 40 and 8.66 
�9 103;.8) 68 and 15.7- 103 . ~ i s i n  
degrees .  

assumption.  0e is the experimental  value of the increment  
in the mean tempera ture  of the layer  and 0 c is the ca lcu-  
lated value�9 A s imi la r  compar ison  for thicker layers  0 
< z / R _ <  0.9, 0 < z / R _ <  1�9 and 0 < z / R _ <  1.7 shows 
that as the layer  thickness is increased the difference be-  
tween the amount of heat passing through the shell and that 
remaining in the layer  dec reases  and approaches zero  for  
the range 0 < z / R  _< 1.7�9 A compar ison  of the values of 0c 
and 0e for the layers  0.9 < z / R  _< 1.15, 1.15 < z / R  _< 1.4, 
and 1�9 < z / R  _ 1.7 indicates an influx of heat into these 
layers  f rom below. In the upper region 1.7 < z / R  _< 2.0 
there is a t r ans fe r  of heat f rom a higher layer  1.85 < Z / R  
_< 2.0 into the layer  1.7 < z / R  _< 1.85 located below. In the 
region 1.7 < z / R  -< 2.0 there is a heat balance to within 
the experimental  e r ro r �9  

Thus in a spherical  volume there are  two regions 
charac te r i zed  by a closed heat balance�9 The mean t empera -  

tures  of these regions during the heating of the volume vary  with the total heat flux entering the liquid 
through the surfaces  of the shell bounding these regions.  The difference in the heating ra tes  in these r e -  
gions is due to the difference in the ratio of the area  of the shell bounding the region to the volume occupied 
by the given region. Since this rat io is l a rger  for  the upper region the rate of growth of the temperature  
is also l a rger  in the upper region�9 

On the basis of the experiments  per formed we propose the following approximate physical  model of 
the hea t - t r ans fe r  p rocess  in ax isymmetr ic  volumes with the heat flux density specified on the surface:  

1. The flow of liquid in the volume is ax i symmetr ic  and is also quasistatic af ter  the time Fo* = 0.32 
Ra-0�9149 

2. There are  dynamic and thermal  boundary layers  on the boundary with a heat-emit t ing surface�9 

3. In the liquid outside the boundary layer  it is possible to distinguish a region of uniform t empera -  
ture (0 < z / R  _< 1.7) and a stratified zone (1.7 < z / R  -< 2.0). The bulk region can be treated as 
a lumped pa rame te r  sys tem,  assuming in the f i rs t  approximation that the time dependence of the 
bulk tempera ture  is given by the law for  the mean bulk tempera ture  0 = 3Fo. The tempera ture  of 
the stratif ied region is a function of height and time, and can be found by a one-dimensional  
formulat ion of the equation of conservat ion of energy indicating a balance between the heat en te r -  
ing from the shell and that t ransmit ted by conduction and convection�9 The contribution of con-  
vection is est imated by using the hea t - t r ans fe r  coefficient determined,  for example,  f rom (1). 

a 

l) 

R 
L 
Z 

T 
q 

NOTATION 

is the thermal diffusivity; 
is the kinematic viscosity; 
is the radius; 
is the length; 
is the vertical coordinate (z = 0 for the lower point); 
is the time; 
is the heat  flux density; 
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At 

= t T - t o 
0 = A[(t~ - t 0)/qR] 
Pr = v/a 
FO = a r / R  2 
Ra = gj3qR4/val 
Nu = qR /AtA 

is the coordinate  angle in a meridiona[  c ros s  section formed by the ver t i ca l  axis 
and the moving radius (r = 0 for  the lower point); 
is the t empera tu re  drop in the boundary layer ;  
is the t empera tu re  increment ;  
is the t empera tu re  increment  in dimensionless  form; 
is the Prandt l  number;  
is the F o u r i e r  number;  
is the Rayleigh number;  
is the Nussel t  number.  
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