EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER
IN AXISYMMETRIC VOLUMES FOR BOUNDARY
CONDITIONS OF THE SECOND KIND

Yu. A. Kirichenko and V. N. Shchelkunov UDC 536.252

Free-convection heat transfer is investigated in spherical volumes and in a horizontal
cylinder with a constant heat flux density at the surface. Relations are obtained for the
temperature distribution and the rate of heat transfer at the wall — liquid interface.

Studies of motion and heat transfer in natural convection are of interest from hoth the theoretical and
practical points of view. The theoretical interest lies primarily in such features of the process as the
interaction of the boundary layer with the bulk of the liquid, characterized by certain velocity and tempera-
ture distributions.

One of the most important practical applications of the problems of internal convection is related to
the problem of the protracted storage of cryogenic liquids.

Convection in horizontal and vertical layers of liquid has been adequately studied for various boundary
conditions. Numerical, experimental, and theoretical studies have led to data on the laws of heat transfer
in layers, the nature of the motion of the liquid, and the temperature distributions [1-8]. Heat transfer in
axisymmetric volumes (sphere, torus, horizontal cylinder) during the development of convection is com~
plicated largely as a result of the specific configuration of the heat-releasing surface, and has not been
investigated except for certain regularities related to the overall heat-transfer characteristics [9-13].

What has been said applies primarily to the practically important case when the heat flux density at the
boundary of the volume is specified.

The present work is a continuation of the studies reported in [13, 14] and seeks to determine the
characteristic convection times in a spherical volume with a given heat flux density at the surface, and
to study the pattern of motion of the liquid and the reasons for the temperature stratification of the liquid
over the height of the volume.

The flow was made visible by introducing powdered aluminum into a horizontal cylinder (L./R = 1.4)
with transparent bases filled with polyethylsiloxane liquid No. 2 (Pr = 77.5, v = 8.23-107% m?/ sec).

The photographs in Fig. 1 show the characteristic features of the development of the motion and the
pattern corresponding to the establishment of the flow in a horizontal circular cylinder.

Experiment shows that the pattern of motion is plane and symmetric with respect to the vertical
plane passing through the axis of the cylinder. Three characteristic flows of the liquid can be distinguished
in a cross section: an upward jet, flow along the heat-releasing surface, and a counter flow in the bulk of
the liquid. The last two flows form a circulation loop.

Motion of the liguid along the heat-releasing surface, i.e., the flow determining the hydrodynamic
boundary layer, is observed from values of the coordinate angle ¢ = 15-20°. In the boundary layer, against
the background of the general mass motion of the medium, appear individual jets rising from the shell
and spreading to the sides. On the whole the flow of the liquid here is of the nature of a traveling wave, as
is particularly clearly shown in the 15 = ¢ < 90° region. This characteristic of the motion can be clearly
seen in Fig. 1c and d.
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Fig. 1. Pattern of motion of a liquid in a horizontal cylinder: a) T = 1.5 min; b) 13.5; ¢) 14; d)
17; e) 18.5; f) 25.

The maximum velocity of the liquid in the boundary layer (~107% m /sec) occurs in the —region of the
boundary where ¢ = 70-90°,

Higher along the shell the wave character disappears, the flow becomes steadier and takes on the
character of a creeping motion.

Damping of the flow of the boundary layer in the upper part of the volume is a characteristic feature
distinguishing the boundary layer in finite volumes heated from all sides from convective motion in infinite
vertical layers. When the bulk temperature of the liquid increases upward in a finite volume the elements
of liquid in the outer part of the boundary layer finally fall into the uniform density region; that is, they
lose their excess angular momentum and energy with respect to the bulk of the liquid and become part of
it. Thus the velocity diminishes and the mass of the boundary layer decreases. In such configurations
as a sphere, torus, or horizontal cylinder the slowing down of the flow in the boundary layer aids not only
the temperature and density gradients in the bulk of the liquid, but also the orientation of the heat releasing
surface in the gravitational field for ¢ > 135°,

Along with the upward flow in the boundary layer there is a counter flow in the bulk of the liquid. In
the formation of the circulation flow the peripheral regions of the bulk are set into motion first, and then the
whole bulk acquires a downward motion, In the outer part the downward flow of the liquid tends to follow
the curved container wall, but is forced toward the center by the jets rising from the bottom.

Single ascending and descending jets occupy an appreciable part of the volume. The ascending jets
lie in the 0 = ¢ = 70° range and penetrate the bulk of the liquid to a height z =R (Fig. la-c).*

As a result of the interaction of the downward flow and the jet flow the liquid in the lower part of the
volume is well mixed and the heat entering this region is rather uniformly distributed.

One should expect the pattern of the motion of liquid in a spherical volume to be generally similar to
that observed here.

*This type of motion occurred throughout the whole experiment. The fact that the jets are not fixed in
Fig. 1d-f is a result of the powder being carried away from the lower part of the volume,
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Fig. 2. Change of the temperature drop between the shell and the outside of the boundary layer:
1) ethyl alcohol, diameter of vessel ¢ = 0.15 m, g = 1.06+ 10 W /m?, Ra = 1.4- 10 2) ethyl
alcohol, ® = 0.3 m, q = 2.64-10> W /m?, Ra = 5.6-10'%; 3) water, ¢ = 0.3 m, g = 15.1-10* W
/m?, Ra = 3.2-10'% 4) ethyl alcohol, ® = 0.3 m, q = 13.5-10° W /m?, Ra = 2.8-10'". Experi-
mental points: 1') ¢ = 112,5°; 2') 135; 3') 157.5. 7 is in min and At in °C.

Fig. 3. Limit of establishment of quasistationary heat transfer at a vertical plate [15] (solid
line) and in a spherical volume (experimental points): 1) water, ¢ = 0.15 m, g = (4; 6.8; 9.4)

.10 W /m?; 2) ethyl alcohol, ¢ = 0.15 m, q = (3; 5.3; 7.4) - 10! W /m?; 3) water, @ = 0.3 m, g
= (3.4; 8.4; 13.4)- 10° W /m?; 4) ethyl alcohol, @ = 0.3 m, q = (2.6; 6.8; 12.4) - 108 W /m?2

Heat transfer in a spherical volume was investigated in 0,15, 0.3, and 0.5 m diameter vessels filled
with butyl and ethyl alcohol and distilled water. Heat was supplied to the surface of the vessel by an electric
heater at a rate 10 = q = 10> W /m? with 3-10% < Ra = 10'L,

We present below an analysis of the characteristic heat-transfer times in a spherical volume corre-
sponding to nonstationary, transient, and quasistationary processes.

In the present problem the heat-transfer process is a result of the interaction of convective heat
transfer by circulatory motion of the liquid and heat conduction. The time evolution of micro- and macro-
transfer processes is a result of the character of the heat transfer at various stages.

Heat transfer at the wall —liquid interface is determined by processes in the boundary layer, and
becomes quasistationary after the passage of the first wave of liquid along the shell. Examination of the
curve showing the change of the temperature drop between the shell and the outside of the boundary layer
with the time of its formation shows that the extreme points separate the process of the formation of the
temperature drop into two periods (Fig. 2). The first period, corresponding to the part of the curve from
7 = 0 to the instant when the drop reaches its maximum, is characterized by the predominance of heat
conduction in the heat-transfer process in the boundary layer. The second period is characterized by the
increasing contribution of convection and ends with the establishment of a steady drop. The time to estab-
lish a steady temperature drop at the wall — liquid interface does not exceed 1.5-3 min in our experiments.
Part of this time* is consumed in establishing the temperature distribution over the thickness of the shell.
The brevity of the nonstationary part of the heat-transfer process at the boundary of the configuration for
a negligible change in its duration from experiment to experiment, i.e., with a change in the size of the
vessel, the kind of liguid, and the magnitude of the heat flux, does not permit the deduction of any relation
accurately establishing the time limit of this regime.

In the range of Rayleigh numbers investigated the average time to establish quasistationary heat
transfer at the wall —liquid interface corresponds to a Fourier number of ~1073,

A comparigon of our experimental points corresponding to the limit of quasistationary heat transfer
with a corresponding relation for a vertical plate [15] extrapolated to Rayleigh numbers greater than 107
shows good agreement (Fig. 3).

*Calculations performed on the assumption that at time zero all the heat supplied by the heater goes into

heating the shell show that the time necessary to produce the given temperature drop is of the order of 0.1~
0.5 min.
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A similar conclusion follows also from very general considerations. In the initial stage of the pro-
cess, when the volume of the liquid is not stratified, i.e., there is no adverse density gradient and no bulk
circulatory motion, the flow of the boundary layer in a spherical volume experiences the same interaction
as on a vertical plate if singularities introduced by the curvature of the shell are neglected.

The rate of heat transfer at the wall —liquid interface in the quasistationary regime can be expressed
in terms of the overall heat-transfer coefficient as a function of the Rayleigh number

Nu = CRa#, (1)

— . —_— . s I H = V. i + “- H = U, + - .
Where Nu——aR/?\, Q= [;l [L( ),35 10 = Ra< 0 C 0 k 0.2 0005

The formation of the temperature distribution in the bulk of the liquid can be divided into three stages
corresponding to nonstationary, transient, and guasistationary heat-transfer processes. During the first
stage the liquid acquires a circulatory motion and the process is of a particularly nonstationary character;
the rates of heating -of the upper and lower regions of the volume are appreciably different — low for the
lower region and high for the upper region. The nature of heat transfer in the transient regime is deter-
mined basically by the circulatory motion and nonstationary heat conduction. The heating rates at various
points of the volume in this stage are leveled out and approach the value given by the mean bulk temperature
law 8= A[{t; —tp) /qR] = 3Fo. It may be necessary to assume a quasistationary regime characterized by
the equality of the heating rates at all points of the volume to establish stationary transfer by heat conduc-
tion (Fo* = 0.5).

The time to establish the transient regime, or the upper limit of the nonstationary regime, deter-
mining the duration of the formation of the circulatory motion in the volume can be obtained by assuming
that the circulatory motion is formed after a single passage of all the liquid in the volume through the
boundary layer. Thus

o Y
T G (2)

or

2
T — 0.845—6%— . (3)

Here v is the volume of the vessel; G is the volumetric flow rate through the boundary layer; U is the
average velocity of the liquid in the boundary layer; and § is the average thickness of the boundary layer.

By using Eq. (1) the relation for the thickness of the boundary layer 6 = 2R /Nu obtained in [13] be-
comes

: R
Assuming that all the heat passing through the shell in the region of the pronounced boundary layer (0

= ¢ = 135° is transferred to the bulk of the liquid in the region 0 =< z /R = 1.7, characterized by a closed
heat balance, it is possible to obtain the following formula for the average velocity of the liquid in the
boundary layer:

UR__. 0.99Ra04, (5)
a
or
Ul 1
YR 992 ——Rav+. (52)
v Pr
Substitution of (4) and (5) info (3) gives
v =032 X Raoz, ()
a
or, transforming to generalized variables
Fo* = 0.32Ra~02. (M
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TABLE 1. Values of the Coefficients in Eqs. (8) and (11) Describing
the Temperature Distribution in a Liquid

Liquid
|
2 | L M
5 B; C;-102 b; . iy i
t 1
0--0,6 1,245 —0,265 0,03 | —#4¢ | —0,0881
0,9 1,66 —0,187 0,02 | —I76 —0.281
115 272 —0,15 001 | —97.,9 —0.690
14 415 0,13 —0,01 38,0 3006
17 15°6 5.0 —005 | 270 1 1,09
1,85 27,44 12,9 —0,065 l 350 1,16
2.0 554 38,0 —0,085 | 437 t 1,32

A similay relation can be obtained also from an analysis of the heating curves for various points of
a spherical volume since the onset of the transient heat-transfer regime manifests itself in a change in the

curvature of these curves.

The times characteristic for various Rayleigh numbers calculated by using Eq. (7) are rather close
to the results obtained in [17] where numerical methods were used to investigate natural convection in a
flat region with the admission of heat through the lateral surface.

The quasistationary regime of heat transfer was not reached in our experiments since the duration
of the experiments was limited by the boiling of the liquid.

In the time interval studied (0 < Fo =< 3-107?%) relations were obtained in generalized variables de-
scribing the time dependence of the temperature at various points on the vertical axis of a spherical vol-
ume T and in the meridional cross section on the shell.

During nonstationary heating (0 < Fo = Fo*
0, == »; [1 —exp (— m;Foil, (8)

im
where m; and »j are dimensionless coefficients depending on the Rayleigh number and determined from
Egs. (9) and (10), respectively,
exp (— m; Fo*) — 1 C;

= —— —Fo*, (9)
m; :
7; = B; Ra¥ S -+ L Fo“‘j = B;Ra” Al,.
B, m; J (10)
In the transient regime (Fo* = Fo = 3- 107%)
= (C, -- B, Fo) Ra¥. (11)

The values of the coefficients in Egs. (8) and (11) are listed in Tables 1 and 2. The accuracy of the
calculation of the temperature using the relations given is +10% for the lower region (0 = z/R = 1.5),
and £15% for the upper region (1.5 =z /R = 2.0).

Figure 4 shows typical curves for the temperature distribution along the vertical axis of the vessel.
The character of the curves indicates large temperature gradients in the upper part of the volume and
appreciably more heating than in the average bulk of the liquid in this region. These features of the tem-
perature distribution are accounted for in most of the convection studies known at the present time by
assuming the formation of a heated stratified zone as a result of the energy yielded by the boundary layer
[18-21]. It must be assumed that this hypothesis represents a real process only when bounded regions are
considered with heat input through the lateral walls. For heat input in all directions the heating and tem-
perature stratification of the liquid in the upper part of the configuration are due mainly to heat flow through
the upper regions of the boundary. This is tested by an energy analysis comparing the actual increments
of the mean temperatures of various horizontal layers with the values of the temperature increment cal-
culated by assuming that all the heat supplied by the heater at the boundary of a given layer goes to increase
its temperature, The experimental value of the increment in the mean temperature 6, during a chosen
time interval in the range 0 < z /R = 0.6 is 1,7-2.5 times smaller than that calculated under the above

iThe temperature distribution along the vertical axis is sufficient to describe the temperature distribution
in the bulk of the liquid since as the volume is heated the temperature is constant at each instant in each
horizontal cross section.

795



TABLE 2. Values of the Coefficients in Eq. (11) Describing the
Temperature Distribution in a Shell in the Transient Heating Re-

gime
Shell
| |
0 ‘ B; ‘ci-wi b; i 9° ‘ B; ‘ci.mz by
| ) |
i
0--45 9,35 | 3,98 |—0,058 | 135 29,6 18,5 —0,08
67,5 10,77 4,6 r—0,06 157,5 43,7 29,34 | —0,085
112,5 16,5 l 9,44 | —0,07 180 55,4 38,0 —0,085

=y

q75 "//
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a 5 V) 5 20 25 W 35 a0
Fig. 4. Temperature distribution along
the vertical axis of a spherical volume:
1) 7 = 3 min, Fo = 0.65-10%; 2) 5 and
1.08 - 10%, respectively; 3) 7 and 1,52
-10% 4) 11 and 2.39-10% 5) 15 and 3.25
-10% 6) 25 and 5.9 10%; 7) 40 and 8.66
-10%; 8) 68 and 15.7-10°. #1is in
degrees.

id

assumption. 6 is the experimental value of the increment
in the mean temperature of the layer and 6, is the calcu-
lated value. A similar comparison for thicker layers 0
<z/R=0.9, 0<z/R=1.15, and 0 <z /R = 1.7 shows
that as the layer thickness is increased the difference be-
tween the amount of heat passing through the shell and that
remaining in the layer decreases and approaches zero for
the range 0 < z/R = 1.7. A comparison of the values of 4
and 6 for the layers 0.9 <z /R =< 1,15, 1.15 <z /R = 1.4,
and 1.4 <z /R = 1.7 indicates an influx of heat into these
layers from below. In the upper region 1.7 <z /R = 2.0
there is a transfer of heat from a higher layer 1.85 < Z/R
=< 2,0 into the layer 1.7 < z/R = 1.85 located below. In the
region 1,7 < z /R = 2.0 there is a heat balance to within
the experimental error.

Thus in a spherical volume there are two regions
characterized by a closed heat balance. The mean tempera-

tures of these regions during the heating of the volume vary with the total heat flux entering the liquid

~ through the surfaces of the shell bounding these regions. The difference in the heating rates in these re-
gions is due to the difference in the ratio of the area of the shell bounding the region to the volume occupied
by the given region. Since this ratio is larger for the upper region the rate of growth of the temperature

is also larger in the upper region.

On the basis of the experiments performed we propose the following approximate physical model of
the heat~transfer process in axisymmetric volumes with the heat flux density specified on the surface:

1. The flow of liquid in the volume is axisymmetric and is also quasistatic after the time Fo* = (.32

Ra—O.Z

There are dynamic and thermal boundary layers on the boundary with a heat-emitting surface.

In the liquid outside the boundary layer it is possible to distinguish a region of uniform tempera-

ture (0 < z/R = 1.7) and a stratified zone (1.7 < z/R = 2.0). The bulk region can be treated as
a lumped parameter system, assuming in the first approximation that the time dependence of the
bulk temperature is given by the law for the mean bulk temperature ¢ = 3Fo. The temperature of
the stratified region is a function of height and time, and can be found by a one-dimensional
formulation of the equation of conservation of energy indicating a balance between the heat enter-
ing from the shell and that transmitted by conduction and convection. The contribution of con-
vection is estimated by using the heat-transfer coefficient determined, for example, from (1).

is the thermal diffusivity;
is the kinematic viscosity;
is the radius;
is the length;

is the time;
is the heat flux density;

Q 4 N e 8
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NOTATION

is the vertical coordinate (z = 0 for the lower point);



@ is the coordinate angle in a meridional cross section formed by the vertical axis
and the moving radius (¢ = 0 for the lower point);
At is the temperature drop in the boundary layer;
4= b=t is the temperature increment;
0= Altr —to) /dR] is the temperature increment in dimensionless form;
Pr=v/a is the Prandtl number;
Fo=ar/R? is the Fourier number;
Ra = gBqR*/var is the Rayleigh number;
Nu = gR / AtA is the Nusselt number.
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